JEE & NEET Syllabus Eligibility Exam Pattern Cut-off
Hey! Welcome to Prosir
📘 Mathematics Topics
Explore mathematics for JEE, CBSE, and ICSE with formulas, solved examples, and practice sets.
JEE Main & Advanced
Quadratic Equations
Standard form: \( ax^2 + bx + c = 0 \)
Roots: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)
Discriminant: \( D = b^2 - 4ac \)
Binomial Theorem
General term: \( T_{r+1} = \binom{n}{r} a^{n-r} b^r \)
Expansion: \( (a + b)^n = \sum_{r=0}^{n} \binom{n}{r} a^{n-r} b^r \)
Calculus
Derivative: \( \frac{d}{dx} (x^n) = nx^{n-1} \)
Integration: \( \int x^n dx = \frac{x^{n+1}}{n+1} + C \)
Limit: \( \lim_{x \to 0} \frac{\sin x}{x} = 1 \)
Coordinate Geometry
Distance formula: \( d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
Circle: \( x^2 + y^2 + 2gx + 2fy + c = 0 \)
Parabola: \( y^2 = 4ax \)
CBSE Mathematics
Trigonometry
Identity: \( \sin^2 \theta + \cos^2 \theta = 1 \)
Formula: \( \tan(\alpha \pm \beta) = \frac{\tan\alpha \pm \tan\beta}{1 \mp \tan\alpha\tan\beta} \)
Law of Sines: \( \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)
Statistics
Mean: \( \bar{x} = \frac{\Sigma f_i x_i}{\Sigma f_i} \)
Variance: \( \sigma^2 = \frac{\Sigma (x_i - \bar{x})^2}{N} \)
Standard Deviation: \( \sigma = \sqrt{\frac{\Sigma (x_i - \bar{x})^2}{N}} \)
Probability
\( P(E) = \frac{n(E)}{n(S)} \)
Addition law: \( P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
Conditional Probability: \( P(A|B) = \frac{P(A \cap B)}{P(B)} \)
ICSE Mathematics
Mensuration
Surface area of sphere: \( 4 \pi r^2 \)
Volume of cone: \( \frac{1}{3} \pi r^2 h \)
Volume of cylinder: \( \pi r^2 h \)
Algebra
Identity: \( (a+b)^2 = a^2 + 2ab + b^2 \)
Identity: \( (a-b)^2 = a^2 - 2ab + b^2 \)
Identity: \( a^2 - b^2 = (a+b)(a-b) \)
Arithmetic Progression
n-th term: \( a_n = a + (n-1)d \)
Sum of n terms: \( S_n = \frac{n}{2} [2a + (n-1)d] \)
Sum of n terms (alternate): \( S_n = \frac{n}{2} [a + l] \) where l is last term

